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Abstract:We introduce a new geometric multigrid algorithm to solve elliptic interface problems. First we dis-
cretize the problems by the usual P1-conforming finite element methods on a semi-uniform grid which is
obtained by refining a uniform grid. To solve the algebraic system, we adopt subspace correctionmethods for
which we use uniform grids as the auxiliary spaces. To enhance the efficiency of the algorithms, we define
a new transfer operator between a uniform grid and a semi-uniform grid so that the transferred functions sat-
isfy the flux continuity along the interface. In the auxiliary space, the system is solved by the usual multigrid
algorithm with a similarly modified prolongation operator. We showW-cycle convergence for the proposed
multigrid algorithm. We demonstrate the performance of our multigrid algorithm for problems having vari-
ous ratios of parameters. We observe that the computational complexity of our algorithms are robust for all
problems we tested.
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1 Introduction

Multigrid (MG) algorithm is one of the most efficient solvers for linear systems arising from the discretiza-
tion of partial differential equations (PDEs) [5, 13, 24]. However, it is hard to develop robust geometric MG
algorithms when there exist some interfaces in the domain across which the coefficients are distinct. This is
because the PDE needs to be discretized on the fitted grids, which results in the non-uniformity of the matrix
structure. Thus one often uses algebraic multigrid methods [12, 26, 27] or various PCG type of solvers. How-
ever, efficient fast solvers are rarely available. For finite difference type MG algorithms for interface problems
were considered in [1, 2].

Recently, the authors developed a robust geometric MG algorithm for interface problems [17, 18] dis-
cretized using immersed finite element method [19, 20, 23]. The idea in [17] is to use uniform grids for the
interface problems where the basis functions are modified instead. Since the discretized system was con-
structed on uniform grids, it is possible to develop geometric multigrid algorithms for problems having the
interface problems.

In thiswork,wedevelop anewMGalgorithm for interface problems through someother approach.Weuse
the usual P1-conforming finite element method on a semi-uniform grid. Our semi-uniform grids are obtained
from the uniform grid by subdividing the interface element into three triangles using the intersection points
with the interface. To solve the discretized system,we adopt subspace correction ideas in [13, 21] by choosing
the uniform grids space as an auxiliary space. First, we consider a two-grid method using a uniform grid
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as an auxiliary subgrid. In this step, the values only at the interface points are interpolated. For the inner
algorithm, the modified prolongation operator is used on uniform grids. We will call our method a semi-
uniform multigrid (SUMG) algorithm.

The efficiency of the subspace correction methods relies on the transfer operator which updates correc-
tions of values on uniform grids onto the semi-uniform grid. We define the transfer operator so that the
transferred functions satisfy the local flux conditions along the interface. For the systems on the uniform
grids, we use similar ideas for the prolongation operators in the multigrid algorithm on auxiliary spaces. In
this way, we are able to develop a robust algorithm.

We analyze our multigrid algorithm using the frameworks of [7] where the analysis of multigrid algo-
rithms on non-nested or non-inherited spaces is provided. In our algorithm, all subspaces are nested.
However, the bilinear forms are not inherited between grids.

We consider the following elliptic interface problem on a convex polygonal (polyhedral) domain Ω inℝn

(n = 2, 3):

−∇ ⋅ β∇u = f in Ω, (1.1a)
[u]Γ = 0, (1.1b)

[β ∂u∂n]Γ
= 0, (1.1c)

u = 0 on ∂Ω, (1.1d)

where f ∈ L2(Ω), and Γ ⊂ Ω is an interface which divides the domain into two subdomains Ω+ and Ω−. Here,
[ ⋅ ]Γ implies the jumps of functions along Γ, i.e.,

[u]Γ = u|Ω− − u|Ω+ ,
[β ∂u∂n]Γ

= β|Ω− ∂u|Ω−
∂n
− β|Ω+ ∂u|Ω+

∂n
,

wheren is an outward normal vector to Ω−. We assume that Γ is a C1-curve. The coefficient β is discontinuous
across the interface Γ, where β = β+ ∈ C(Ω+) and β = β− ∈ C(Ω−).

We introduce some function spaces and notations. For any bounded domain D and positive integer m,
let Hm(D) be the usual Sobolev space of order m with the norm denoted by ‖ ⋅ ‖m,D. We define H1

0(D) as a set
of functions in H1(D) vanishing on ∂D. We denote the dual space of H1

0(D) by H−1(D). For any real number
between integer m and m + 1, we define fractional Sobolev space Hs(D) as the interpolation between Hm(D)
and Hm+1(D). We need to define subspaces of H1

0(Ω) and H1+α(Ω), which satisfy the interface conditions

H1
0,Γ(Ω) := {u ∈ H

1
0(Ω) : [u]Γ = [β∇u ⋅ n] = 0},

H1+α
0,Γ (Ω) := H

1
0,Γ(Ω) ∩ H

1+α(Ω).

Integration by parts gives the variational problem for the model problem (1.1): find u ∈ H1
0(Ω) such that

∫
Ω− β∇u ⋅ ∇v dx + ∫Ω+ β∇u ⋅ ∇v dx = ∫Ω fv dx (1.2)

for all v ∈ H1
0(Ω).

We state the regularity theorem regarding the solutions of the elliptic interface problems [3, 5, 16, 25].

Proposition 1.1. There exists an 0 < α ≤ 1, and a unique solution u ∈ H2(Ω−) ∩ H2(Ω+) ∩ H1+α
0,Γ (Ω) of problem

(1.2) which satisfies
‖u‖H1+α(Ω) ≤ C(β)‖f‖H−1+α(Ω),

where C(β) is some positive constant depending on β.

For the simplicity of the presentation, we assume n = 2, even though the case n = 3 can be similarly treated.
The rest of the paper is organized as follows. In Section 2, we review some results on the P1-conforming
Galerkin methods for elliptic interface problems where unfitted grids are used. We propose our semi-uniform
multigrid algorithm in Section 3 and we prove the contracting properties of the multigrid algorithm in Sec-
tion 4. The numerical results are given in Section 5 and conclusion follows in Section 6.
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Figure 1: An interface element.
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Figure 2: Refined grid Fh from uniform grids Th with h = 0.25
where interface is given by circle x2 + y2 = 0.62.

2 P1-Conforming Finite Element Method on Semi-Uniform Grids

We define a semi-uniform grid by sequential steps. First, we let Th be a uniform triangulation of Ω by right
triangles with size h. We call T ∈ Th is an interface element if T is cut by the interface. Otherwise, T is non-
interface element.

We define ameshFh which is a refinement of Th. We assume that elements are cut by interface at nomore
than two points. This assumption is reasonable if we choose h sufficiently small, see [10]. Firstly, the non-
interface elements in Fh are inherited from Th. If T ∈ Th is an interface element, then T is divided into two or
three triangles by including two interface points as new nodes. For example, suppose T is cut by interface at
two edges with intersection points E1 and E2 resulting in a triangle and a quadrilateral region (see Figure 1).
Then quadrilateral region is divided into two sub triangles connecting two nodes in such a way the resulting
triangle satisfy the maximum angle condition [9]. Figure 2 shows the example of Fh when the interface has
circular shape.

We consider two discretizations for problem (1.1).

2.1 P1-Conforming Methods on the Fitted Grid

Wedescribe the usual P1-conforming Galerkinmethods onFh. Let T be a triangle inFh. Let Sh(T) be the set of
linear polynomials on T. Let Sh(Ω) be the usual continuous, piecewise linear finite element (FE) space based
on Fh satisfying homogeneous boundary condition. We associate bilinear form

ah(u, v) := ∑
T∈Fh

( ∫
T∩Ω− β

−∇u ⋅ ∇v + ∫
T∩Ω+ β

+∇u ⋅ ∇v), u, v ∈ H1(Ω).

We define a Galerkin method as usual: find ũh ∈ Sh(Ω) satisfying

ah(ũh , vh) = (f, vh) for all vh ∈ Sh(Ω), (2.1)

where ( ⋅ , ⋅ ) is the usual L2-inner product. The following convergence theorem is proven in [4].

Theorem 2.1. There exists a unique solution for (2.1). Suppose u is solution of (1.1) and let ũh be a solution
of (2.1). Then the following holds:

‖u − ũh‖L2(Ω) + h‖∇(u − ũh)‖L2(Ω) ≤ Ch2‖f‖L2(Ω).
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2.2 P1-Conforming Methods on Uniform Grid

Let Vh(Ω) be the set of continuous, piecewise linear polynomials on the triangulation Th. Let us recall the
property of the bilinear form ah( ⋅ , ⋅ ). We define L2 and H1-norms on H1(Ω) as

‖u‖m,h := ∑
T∈Th
‖u‖m,T , u ∈ H1(Ω),

where m = 0 or 1. It is well known that the energy-like norm on H1(Ω), defined by |||u|||h := √ah(u, u), is
equivalent to H1-norm, i.e., there exists some C > 0 such that

1
C
‖u‖1,h ≤ |||u|||h ≤ C‖u‖1,h . (2.2)

The following theorem regarding the inverse inequality is also well known [11].

Theorem 2.2. There exists a constant C > 0 such that for all ϕ in Sh(Ω) following holds:

ah(ϕ, ϕ) ≤ Ch−2‖ϕ‖2L2(Ω). (2.3)

Let πh : H1+α(Ω)→ Vh(Ω) be the interpolation operator defined by

(πhu)(X) = u(X) for all nodes X of Th .

For three dimension case, we assume α > 0.5 so that the interpolation operator on Th can be well defined.
The following results are well known [11].

Theorem 2.3. There exist C > 0 such that, for all w ∈ H1+α(Ω) following holds:

‖w − πhw‖m,h ≤ Ch1−m+α‖w‖H1+α(Ω), m = 0, 1, (2.4)
‖πhw‖m,h ≤ C‖w‖m,h , m = 0, 1. (2.5)

Now, P1-conforming Galerkin methods on uniform grids reads: Find uh ∈ Vh such that

ah(uh , ϕ) = (f, ϕ) (2.6)

for all ϕ ∈ Vh. The following convergence theorem is a result of Theorem 2.3 and Céa’s Lemma.

Theorem 2.4. Suppose u is solution of (1.1) and uh be solution of (2.6). Then following holds:

‖u − uh‖L2(Ω) + hα‖u − uh‖1,h ≤ C(β)h2α‖w‖H1+α(Ω).

3 Multigrid Algorithm

Using auxiliary space preconditioningmethod [14, 15, 28] as a preconditioner for conjugate gradientmethod
is an efficient strategy to solve algebraic systems. We adopt the idea of auxiliary space preconditioning
methods in this work. For the simplicity of presentation, we assume Ω is a rectangular region. We develop
a new type of multigrid algorithm for Sh(Ω), where the space Vh(Ω) is used as an auxiliary space. We define
sequential triangulations Thk with size hk = h0 ⋅ 2−k, k = 1, . . . , J, for Ω. As in the previous section, semi-
uniform triangulationFhJ is a fitted grid obtained from the finest gridsThJ .Wenote the inclusion relationships
between the subspaces

Vh1 ⊂ Vh2 ⊂ ⋅ ⋅ ⋅ ⊂ VhJ ⊂ ShJ .

From now on, we replace the subscript hk by the subscript k when there is no confusion. For example,

Tk = Thk , ak( ⋅ , ⋅ ) = ahk ( ⋅ , ⋅ ), Sk(Ω) = Shk (Ω), Vk(Ω) = Vhk (Ω).

We introduce some notations. We define ÃJ : SJ(Ω)→ SJ(Ω) so that

aJ(ϕ, ψ) = (ÃJϕ, ψ)
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Figure 3: An interface element.

holds for all ϕ, ψ in SJ(Ω). Similarly, we define Ak(Ω) : Vk(Ω)→ Vk(Ω), k = 1, 2, . . . , J, so that

ak(ϕ, ψ) = (Akϕ, ψ)

holds for all ϕ, ψ in Vk(Ω).
We define an operator γ̂k : Vk(Ω)→ L2(Ω), which will play an important role in our subspace correction

multigrid algorithm. Suppose T is anon-interface element inTk. Then γ̂k(ϕ)|T = ϕ|T . Suppose T is an interface
element (see Figure 3). We define γ̂k(ϕ)|T as a piecewise linear function on T:

γ̂k(ϕ)|T =
{
{
{

a+ + b+x + c+y, (x, y) ∈ T+,
a− + b−x + c−y, (x, y) ∈ T−,

(3.1)

where the coefficients in (3.1) are determined by nodal values and interface conditions (1.1b) and (1.1c) as

γ̂k(ϕ)|T(Xi) = ϕk−1(Xi), i = 1, 2, 3,
γ̂k(ϕ)|T+ (Ei) = γ̂k(ϕ)|T− (Ei), i = 1, 2,

∫

E1E2

β+∇γ̂k(ϕ)|T+ ⋅ nΓh = ∫
E1E2

β−∇γ̂k(ϕ)|T− ⋅ nΓh .
The following result is given in [20, 22].

Theorem 3.1. There exists a constant C > 0 such that for all w ∈ H2(Ω−) ∩ H2(Ω+) ∩ H1+α
0,Γ (Ω), the following

holds:
‖w − γ̂k(πkw)‖m,hk ≤ Ch1−m+αk ‖w‖H1+α(Ω), m = 0, 1. (3.2)

3.1 Semi-Uniform Multigrid Algorithm

We now explain our multigrid algorithm using the auxiliary space VJ(Ω). We write system (2.1) as the matrix
equation

ÃJx = f̃J .

First, we let R̃J be the smoothing operator (say Jacobi or Gauss–Seidel operator) for ÃJ and let R̃tJ be the
transpose of R̃J . To use the subspace correction idea, we need a transfer operator QFU : ϕ ∈ VJ(Ω)→ SJ(Ω).
It suffices to define the nodal values of QFUϕ at all nodes. First, we define

QFUϕ(A) = ϕ(A)

when A is a node of the TJ (for example A = Xi (i = 1, 2, 3, 4) in Figure 4). Suppose A is a node of FJ but not
a node of TJ (for example A = E in Figure 4). Then we define

QFUϕ(A) :=
1
2 (γ̂J(ϕ)|T1 (A) + γ̂J(ϕ)|T2 (A)),
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Figure 4: T1 and T2 are adjacent elements in TJ, and sub-triangles having a dotted edge are elements in FJ.
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Residual Aux. space
QU

FRJ z QF
U z

Coarsest on aux. space

yq
yq = xq +QF

U z

postmoothing

y2q

z = B̂J(Q
U
FRJ )

Figure 5: One cycle of SUMGJ.

where T1 and T2 are adjacent elements inTJ which shareA as a commonnodeofFJ .Wedefine the operatorQUF
from SJ(Ω) to VJ(Ω) as the transpose ofQFU . We assume a sequence of (symmetric) inner grid multigrid opera-
tors B̂k : Vk(Ω)→ Vk(Ω), k = 1, . . . , J, are defined (see next subsection). We propose a subspace correction
multigrid algorithm:

Algorithm SUMGJ . Proceed as follows.
(1) Set x0 = 0 and z0 = 0.
(2) Define xi for i = 1, . . . , q by

xi = xi−1 + R̃k(f̃J − ÃJxi−1).

(3) Restrict the residual to VJ(Ω): QUF (f̃
n
J − ÃJx

q).
(4) Define z = B̂JQUF (f̃

n
J − ÃJx

q).
(5) Define yq by yq = xq + QFUz.
(6) Define yi for i = q + 1, . . . , 2q by

yi = yi−1 + R̃tJ(f̃
n
J − Ã

n
J y
i−1).

(7) Set SUMGJ f̃ nJ = y
2q.

Here, q is the number of pre and post-smoothings (see Figure 5).We note that SUMGJ is a symmetric operator.
Figure 5 illustrates one cycle of semi-uniform multigrid algorithm.

Now we describe the B̂k operator in the following subsection.

3.2 A Multigrid Algorithm B̂k on Uniform Grids

We describe the inner multigrid algorithm B̂k (k = 1, . . . , J) to solve the system of the form

AJuJ = gJ .
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We first define the prolongation operator Îk : Vk−1(Ω)→ Vk(Ω).

Îkv(X) =
{{{
{{{
{

v(X) if X is a node of Tk−1,
1
2 (γ̂k−1(ϕ)|T1 (X) + γ̂k−1(ϕ)|T2 (X)) if X is a midpoint of an edge e shared

by two triangles T1, T2 ∈ Tk−1.

The restriction operator P0k−1 is defined as the adjoint operators of Îk with respect to L
2-inner product ( ⋅ , ⋅ ),

i.e., for u ∈ Vk(Ω) and ϕ ∈ Vk−1(Ω),
(P0k−1u, ϕ) = (u, Îkϕ).

We let Rk be a smoothing operator for Ak (say Jacobi or Gauss–Seidel operator). Now we state the inner
multigrid algorithm B̂k below.

Algorithm B̂k. Set B̂0g0 = A−10 g0. Suppose B̂k−1 is defined. We define B̂kgk for gk ∈ Vk(Ω) in a recursive way.
(1) Set x0 = 0 and z0 = 0.
(2) Define xi for i = 1, . . . ,m by

xi = xi−1 + Rk(gk − Akxi−1).

(3) Define ym by ym = xm + Îkzp where zj for j = 1, . . . , p is defined by

zj = zj−1 + B̂k−1[P0k−1(gk − Akx
m) − Ak−1zj−1].

(4) Define yi for i = m + 1, . . . , 2m by

yi = yi−1 + Rtk(gk − Aky
i−1).

(5) Set B̂kgk = y2m .

Note that this is almost the same as the standardMG algorithm, but the new prolongation operator Îk is used.
The case of p = 1 and p = 2 corresponds to V andW-cycles respectively. We will use notation V(m,m) (resp.
W(m,m)) for B̂k when p = 1 (resp. p = 2).

Let us recall the semi-uniformMG algorithm in Section 3.1.Wewill use the notationVq(m,m) for SUMGJ
when the number of smoothings in SUMGJ is q and V(m,m) is used as a inner multigrid algorithm.

4 Convergence Analysis of Multigrid

In this section, we provide an analysis for both of the multigrid algorithms. First, we analyze algorithm B̂k,
fromwhichwe easily obtain the convergence ofSUMGJ . Firstwedefine Pk−1 : Vk(Ω)→ Vk−1(Ω) as the adjoint
operator of Îk with respect to ak form, i.e., Pk−1 satisfies

ak−1(Pk−1u, v) = ak(u, Îkv)

for all u ∈ Vk(Ω) and v ∈ Vk−1(Ω).
We shall use the framework of Bramble et. al [7], where the convergence of multigrid algorithm with

general prolongation operators are provided. Note that our subspaces Vk are nested, but the prolongation
operators are not a natural injection operator.

We state some assumptions.
(A.1) Smoothing property. There exists a constant CR > 0 such that for all u ∈ Vk(Ω),

(u, u)
λk
≤ CR(R̂ku, u),

where λk is the maximum eigenvalue of Ak, Kk = I − RkAk, K∗k = I − R
t
kAk and R̂k = (I − K

∗
kKk)A

−1
k .

(A.2) There exists a constant C∗ > 0 such that

Ak(Îku, Îku) ≤ C∗Ak−1(u, u) for all u ∈ Vk−1(Ω).



8 | G. Jo and D. Y. Kwak, Semi-Uniform MG for Elliptic Interface Problems

(A.3) Regularity and approximation. There exist a number 0 < ν ≤ 1 and a constant C > 0 such that

|ak((I − ÎkPk−1)u, u)| ≤ Cα(
‖Aku‖20
λk
)
ν
ak(u, u)1−ν

for all u ∈ Vk(Ω).
Then by the framework in [7], we can conclude the following result.

Theorem 4.1. Suppose p = 2 and assumptions (A.1), (A.2) and (A.3) hold. If “m is sufficiently large”, then we
have

|ak((I − B̂kAk)u, u)| ≤ δak(u, u) for all u ∈ Vk(Ω),

where δ is some constant independent of k with the form

δ = M
M + mν

for some M > 0.

The constant M is a function of α, Cα and CR, see [5, 7]. One can find explicit form of M in [5]. In a similar
way, we have:

Theorem 4.2. Under the same assumptions as Theorem 4.1, we have

|aJ((I − SUMGJ ÃJ)u, u)| ≤ δak(u, u) for all u ∈ SJ(Ω).

Proof. This is a two grid algorithm using the grid TJ and FJ, between which the transfer operators QUF and QFU
are used instead of Pk−1 and Îk. Thus the result follows exactly in the same way as Theorem 4.1.

We now examine assumptions (A.1)–(A.3). It is clear that Ak is symmetric positive definite and sparsematrix.
Thus, standard smoothing operators, such as Gauss–Seidel (GS) and Jacobi methods, satisfy (A.1), see [6].
Therefore, it suffices to verify (A.2) and (A.3). We remark that λk = O(h−2).

4.1 Approximation Properties of Îk

In this subsection, we prove some properties of Îk that will play an important role in proving (A.1) and (A.2).
We shall also need the following fact which trivially holds for the piecewise linear functions.

Lemma 4.3. There exists a constant C > 0 such that
h
C ∑i=1,2,3

|v(Xi)| ≤ ‖v‖L2(T) ≤ Ch ∑
i=1,2,3
|v(Xi)| for all v ∈ Sh(T), (4.1)

where Xi, i = 1, 2, 3, are nodes of T.

We introduce some notations. We define a space of (discontinuous) piecewise linear FE space

P−1hk := {ϕ ∈ L
2(Ω) : ϕ|T is linear polynomial on T for all T ∈ Tk}.

For each w ∈ H2(Ω−) ∩ H2(Ω+) ∩ H1+α
0,Γ (Ω), we associate the function Dk(w) in P

−1
hk . We let

Dk(w)|T = πk(γ̂k−1(πk−1w)|T)|T

on each T ∈ Tk−1. We remark that, Dk(w)|T is a continuous, piecewise linear function on each subtriangle
in Tk, but Dk(w) is discontinuous in general. The following approximation property holds:

Lemma 4.4. Let w ∈ H2(Ω−) ∩ H2(Ω+) ∩ H1+α
0,Γ (Ω). Then we have

‖Dk(w) − πkw‖m,T ≤ Ch1−m+αk ‖w‖H1+α(T), m = 0, 1, (4.2)

for all T ∈ Tk−1.
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Figure 6: T1 and T2 are neighboring elements in Tk−1 having common edge e2.

Proof. If T is a non-interface element, this follows from the standard interpolation theory. Suppose T is an
interface element. By the triangle inequality and (2.5), (2.4) and (3.2), we have

‖w − Dk(w)‖m,T = ‖w − πk(γ̂k−1(πk−1w)|T)‖m,T
≤ ‖w − πkw‖m,T + ‖πk(w − γ̂k−1(πk−1w)|T)‖m,T
≤ ‖w − πkw‖m,T + C‖w − γ̂k−1(πk−1w)‖m,T
≤ Ch1−m+α‖w‖H1+α(T).

Next, we study the jumps of Dk(w) along the edges of T ∈ Tk−1.

Lemma 4.5. Let w ∈ H2(Ω−) ∩ H2(Ω+) ∩ H1+α
0,Γ (Ω). Let e be the common edge of T1, T2 ∈ Tk−1. Then the follow-

ing holds:
max
e
|[Dk(w)]e| ≤ Chα(‖w‖H1+α(T1) + ‖w‖H1+α(T2)), (4.3)

where [Dk(w)]e is the jump of Dk(w) along e.

Proof. For convenience, let ϕk = Dk(w) − πkw. Suppose that T1 has nodes Xi and midpoints mi of edge ei
(i = 1, 2, 3) respectively. Without loss of generality, we assume that the common edge of T1 and T2 is e2 (see
Figure 6). We note that ϕk|T1 is a continuous, piecewise linear function on T1 having six degrees of freedom
(at nodes Xi and mid points mi, i = 1, 2, 3). By using inequality (4.1) and (4.2), we have

Chk( ∑
i=1,2,3
|ϕk|T1 (Xi)| + ∑

i=1,2,3
|ϕk|T1 (mi)|) ≤ ‖ϕk‖0,T1 ≤ Ch1+αk ‖w‖H1+α(T1).

However, since Dk(w)|T1 (Xi) = πkw|T1 (Xi), we have

|ϕk|T1 (mi)| ≤ Chαk‖w‖H1+α(T1), i = 1, 2, 3.

This implies
max
e
|(ϕk|T1 )e| ≤ Chαk‖w‖H1+α(T1). (4.4)

Similarly, we have
max
e
|(ϕk|T2 )e| ≤ Chαk‖w‖H1+α(T2). (4.5)

By (4.4) and (4.5), we have
|[ϕk]e|e ≤ Chαk(‖w‖H1+α(T1) + ‖w‖H1+α(T2)). (4.6)

However, since πkw is continuous on Ω,

|[ϕk]e|e = |[Dk]e|e .

Therefore, (4.6) leads to the conclusion.

Finally, we give the main proposition regarding the approximation property of Îk.
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X3

X1
X2m1

m2
m3

e1

e2e3

T
T2T3

T1

Figure 7: T is typical element in Tk−1 and T1 and T2 and T3 are neighboring elements of T in Tk−1.

Proposition 4.6. There exists a constant C > 0 such that for allw ∈ H2(Ω−) ∩ H2(Ω+) ∩ H1+α
0,Γ (Ω) and form = 0

or 1, the following holds:
‖πkw − Îkπk−1w‖m,hk ≤ Ch1−m+αk ‖w‖H1+α(Ω). (4.7)

Proof. We refer to Figure 7. Suppose that T is the triangle in the center having X1, X2 and X3, and midpoints
of edges as m1, m2, and m3. We suppose that T has neighboring elements Ti (i = 1, 2, 3), where ei is the
common edge of Ti and T, respectively. By the definition of Dk(w), and Îk−1, we have

Îk−1πk−1(Xi) = Dk(w)|T(Xi) = πkw(Xi) = w(Xi), (4.8)

Îk−1πk−1(mi) =
1
2 (Dk(w)|T(mi) + Dk(w)|Ti (mi)). (4.9)

The identity 1
2 (a + b) = a −

1
2 (a − b) yields

Îk−1πk−1(mi) = Dk(w)|T(mi) −
1
2 [Dk(w)(mi)]ei .

By the triangle inequality, we have

|πkw(mi) − Îk−1πk−1(mi)| ≤ |πkw(mi) − Dk(w)|T(mi)| +
1
2 |[Dk(w)(mi)]ei | = A1 + A2. (4.10)

Using the fact that πkw and Dk(w) are piecewise polynomials on T and equations (4.1) and (4.2), we obtain

A1 ≤ Ch−1k ‖πkw − Dk(w)‖0,T ≤ Ch
−1
k Ch

1+α
k ‖w‖H1+α(T) = Chαk‖w‖H1+α(T). (4.11)

By (4.3), we have
A2 ≤ Chαk(‖w‖H1+α(T) + ‖w‖H1+α(Ti)). (4.12)

From (4.10), (4.11) and (4.12), we obtain

|πkw(mi) − Îk−1πk−1(mi)| ≤ Chαk(‖w‖H1+α(T) + ‖w‖H1+α(Ti)). (4.13)

By the fact that πkw − Îk−1πk−1w is a continuous, piecewise linear functions on T and by (4.1), (4.8) and
(4.13), we have

‖πkw − Îk−1πk−1w‖L2(T) ≤ Chk( ∑
i=1,2,3
|πkw(Xi) − Îk−1πk−1w(Xi)| + ∑

i=1,2,3
|πkw(mi) − Îk−1πk−1w(mi)|)

= Chk ∑
i=1,2,3
|πkw(mi) − Îk−1πk−1w(mi)|

≤ Ch1+αk (‖w‖H1+α(T) + ∑
i=1,2,3
‖w‖H1+α(Ti)).

By summing over T ∈ Tk−1, we obtain the desired inequality for casem = 0. The case whenm = 1 is obtained
from the standard inverse inequality.
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4.2 Proof of Theorem 4.1

It suffices to show (A.2) and (A.3). Firstly, we need following lemma.

Lemma 4.7. There exists a constant C > 0 such that

‖Îku‖L2(Ω) ≤ C‖u‖L2(Ω) (4.14)

for u ∈ Vk−1(Ω).

Proof. When T ∈ Tk−1 is a non-interface element in Thk , then Îku|T = u|T . Thus, (u, u)T = (Îku, Îku)T . Assume
T is an interface element. Suppose X1, X2 and X3 are nodes of triangle T, and m1, m2 and m3 are mid points
of Xi (i = 1, 2, 3) (see Figure 6). Then, by the definition of Îk, we have u(Xi) = Îku(Xi), i = 1, 2, 3. Also, the
values of Îku atmi are intermediate values of u(Xi) and u(Xi+1) (here, X4 = X1). This is how Îku is constructed.
In fact, because the diffusion coefficient β does not change sign across the interface, the values on the edges
are bounded by the values on the nodes. See details in [10]. By (4.1), we have,

‖Îku‖0,T ≤ Chk
3
∑
i=1
|Îku(Xi)| + Chk

3
∑
i=1
|Îku(mi)| ≤ Chk

3
∑
i=1
|u(Xi)| ≤ C‖u‖0,T .

By summing over all elements T ∈ Tk, we have the conclusion.

Lemma 4.8. There exists a constant C > 0 such that

‖Îku‖1,h ≤ C‖u‖1,h (4.15)

for all u ∈ Vk−1(Ω).

Proof. When T ∈ Tk−1 is a non-interface element, then Îku|T = u|T . Assume T is an interface element. We
refer to Figure 6. By the definition of Îk, we have u(Xi) = Îku(Xi), i = 1, 2, 3. Let a = u(X1). Since u − a and
Îku − a is an H1-function on T vanishing at X1, there exists some constant C > 0 (see [11]) such that

1
C
max
T
|Îku − a| ≤ |Îku|1,T ≤ Cmax

T
|Îku − a|, (4.16)

1
C
max
T
|u − a| ≤ |u|1,T ≤ Cmax

T
|u − a|. (4.17)

By (4.16), we have
|Îku|1,T ≤ C max

i=1,2,3
{|Îku(Xi) − a|, |Îku(mi) − a|}. (4.18)

By the fact that the values of Îku at mi are intermediate values of u(Xi) and u(Xi+1) and by (4.17), we have

max
i=1,2,3
{|Îku(Xi) − a|, |Îku(mi) − a|} ≤ C max

i=1,2,3
|u(Xi) − a| ≤ C|u|1,T . (4.19)

Combining (4.18), (4.19), and (4.14), we have the desired inequality.

We now prove (A.2).

Theorem 4.9. There exists a constant C∗ > 0 such that, for all u ∈ Vk−1(Ω) the following holds:

|||Îku|||k ≤ C∗|||u|||k−1. (4.20)

Proof. The desired inequality follows directly by (2.2) and (4.15).

Corollary 4.10. For all uk ∈ Vk(Ω) the following holds:

|||Pk−1uk|||k−1 ≤ C∗|||uk|||k , (4.21)

where the constat C∗ > 0 is same as in (4.20).

Proof. By the Cauchy–Schwarz inequality and (4.20),

|||Pk−1u|||2k−1 = ak−1(Pk−1u, Pk−1u) = ak(u, ÎkPk−1u) ≤ |||u|||k|||ÎkPk−1u|||k ≤ C
∗|||u|||k|||Pk−1u|||k−1.
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Lemma 4.11. There exists a constant C > 0 such that for all u ∈ Vk−1(Ω), the following holds:

‖u − Îku‖L2(Ω) ≤ Chk|||u|||k−1. (4.22)

Proof. Let ϕk = u − Îku. When T ∈ Tk−1 is a non-interface element, then ‖ϕk‖0,T = 0. Suppose T ∈ Tk−1 is an
interface element with nodes X1, X2 and X3 (see Figure 6). By the fact that ϕk(Xi) = 0, i = 1, 2, 3, we have by
the Poincaré inequality,

‖ϕ‖0,T ≤ Chk‖ϕ‖1,T .

The above inequality, the triangle inequality and (4.15) yield

‖ϕ‖L2(Ω) ≤ Chk‖ϕ‖1,hk ≤ Chk(‖u‖1,hk + ‖Îku‖1,hk ) ≤ Chk‖u‖1,hk .

Lemma 4.12. For all u ∈ Vk,
‖Aku‖H−1(Ω) ≤ C|||u|||k . (4.23)

Proof. We see that for any w in H1(Ω) the following holds:

|(Aku, w)|
‖w‖H1(Ω)

≤
|(Aku, w − πkw)|
‖w‖H1(Ω)

+
|(Aku, πkw)|
‖w‖H1(Ω)

≤
‖Aku‖L2(Ω)‖w − πkw‖L2(Ω)

‖w‖H1(Ω)
+
|||u|||k|||πkw|||k
‖w‖H1(Ω)

≤ Chk‖Aku‖L2(Ω) + C|||u|||k ≤ C|||u|||k ,

where we used the interpolation properties (2.4) and (2.5). By taking supremumover w ∈ H1
0(Ω), we have the

desired inequality.

Finally, we show that assumption (A.3) holds with ν = α2 .

Theorem 4.13. There exists a number 0 < ν < 1 and a constant C > 0 such that for all u ∈ Vk(Ω), the following
holds:

|ak((I − ÎkPk−1)u, u)| ≤ C(
‖Aku‖20
λk
)
ν
ak(u, u)1−ν .

Proof. Consider the following dual problem: given Aku ∈ L2(Ω),

{{{{{
{{{{{
{

−∇ ⋅ (β∇w) = Aku in Ω,

[w]Γ = [β
∂w
∂n ]Γ
= 0,

w = 0 on ∂Ω.

Note that there exists a solution w in H2(Ω−) ∩ H2(Ω+) ∩ H1+α
0,Γ (Ω) such that

‖w‖H1+α(Ω) ≤ C‖Aku‖H−1+α(Ω). (4.24)

By the definition of ak( ⋅ , ⋅ ) and Ak, we see that u is an elliptic projection of w onto Vk(Ω), i.e.,

ak(w, ϕk) = (Aku, ϕk)k , ak(u, ϕk) = (Aku, ϕk)k for all ϕk ∈ Ŝk(Ω).

Hence, we have
|||u − w|||k ≤ Chαk‖w‖H1+α(Ω). (4.25)

Using the triangle inequality and (4.25), (2.4) and (4.24), we obtain

|||u − πkw|||k ≤ |||u − w|||k + |||w − πkw|||k ≤ Chαk‖w‖H1+α(Ω) ≤ Chαk‖Aku‖H−1+α(Ω). (4.26)

By the definition of Îk,

ak((I − ÎkPk−1)u, u) = ak(u, u) − ak−1(Pk−1u, Pk−1u)
= ak(u − πkw, u) + ak−1(πk−1w − Pk−1u, Pk−1u) + ak(πkw, u) − ak−1(πk−1w, Pk−1u)
=: Φ1 + Φ2 + Φ3.
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Using the Cauchy–Schwarz inequality, (4.26), interpolation between spaces [8] and (4.23), we get

|Φ1| ≤ Chαk‖Aku‖H−1+α(Ω)|||u|||k
≤ Chαk‖Aku‖

1−α
H−1(Ω)‖Aku‖αL2(Ω)|||u|||k

≤ Chαk |||u|||
1−α
k ‖Aku‖

α
L2(Ω)|||u|||k = Ch

α
k |||u|||

2−α
k ‖Aku‖

α
L2(Ω). (4.27)

By the definition of Îk and by the Cauchy–Schwarz inequality, (2.2) and (4.7),

Φ3 = ak(πkw − Îkπk−1w, u) ≤ Chαk |||w|||H1+α(Ω)|||u|||k .
Similar techniques as above yield

|Φ3| ≤ Chαk |||u|||
2−α
k ‖Aku‖

α
L2(Ω). (4.28)

To bound Φ2, we define an operator P̃k−1 : Vk(Ω)→ Vk−1(Ω) defined by

ak−1(u, P̃k−1, v) = ak(u, v) for all u ∈ Vk(Ω), v ∈ Vk−1(Ω).

By the definition of the operator P̃k−1 and Pk−1, we rewrite Φ2 as

Φ2 = ak−1(πk−1w − P̃k−1u, Pk−1u) + ak−1(P̃k−1u − Pk−1u, Pk−1u)
= ak−1(πk−1w − P̃k−1u, Pk−1u) + ak(u, (I − Îk)Pk−1u) =: Φ2a + Φ2b . (4.29)

Using the similar technique as (4.26), we have

|Φ2a | = |ak−1(πk−1w, Pk−1u) − ak(u, Pk−1u)|
≤ |ak−1(πk−1w − w, Pk−1u)| + |ak(u − w, Pk−1u)|
≤ Chαk |||u|||

2−α
k ‖Aku‖

α
L2(Ω). (4.30)

By the definition of Ak−1 and the Cauchy–Schwarz inequality, (4.22) and (4.21), we obtain

|Φ2b | = |(Aku, (I − Îk)Pk−1u))| ≤ ‖Aku‖L2(Ω) ⋅ Chk|||Pk−1u|||k−1 ≤ Chk‖Aku‖L2(Ω)|||u|||k . (4.31)

Due to (2.3),
‖Aku‖L2(Ω) = ‖Aku‖αL2(Ω) ⋅ ‖Aku‖

1−α
L2(Ω) ≤ ‖Aku‖

α
L2(Ω) ⋅ Ch

−1+α
k |||u|||

1−α
k . (4.32)

Hence, by (4.31) and (4.32) we have

|Φ2b | ≤ Chk‖Aku‖αL2(Ω) ⋅ Ch
−1+α
k |||u|||

1−α
k−1 |||u|||k = Ch

α
k |||u|||

2−α
k ‖Aku‖

α
L2(Ω). (4.33)

Using (4.27), (4.28), (4.29), (4.30) and (4.33), we obtain

|ak((I − ÎkPk−1)u, u)| ≤ Chαk |||u|||
2−α
k ‖Aku‖

α
L2(Ω).

Hence, by the definition of ||| ⋅ |||k−1 and by (2.3), together with the fact that λk = O(h−2k ), we have

|ak((I − ÎkPk−1)u, u)| ≤ C(
‖Aku‖20
λk
)
α
2
ak(u, u)1−

α
2 .

5 Numerical Results

In this section, we demonstrate the performance of our multigrid algorithm SUMGJ . We report the number
of Vq(m,m) iterations, and total CPU-time to reach the stopping criteria,

‖f̃J − ÃJx‖
‖f̃J‖

< 10−6.
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We present two examples. For the first example, we report the performance of SUMGJ in Table 1, wheremany
different ratios of β are considered, i.e., β

−
β+ = 1, 10, 100, 1000. We see that the number of V3(3, 3) cycles

increases as the ratio of β increases. However, the number of cycles remain bounded as level J increases. For
the second example, we report the performance of SUMGJ withV2(2, 2) of the case β−

β+ = 1
100 in Table 2 where

non-convex subdomain Ω− is considered.
For both the examples, we compare the performance of SUMGJ with that of diagonally-preconditioned

conjugate gradient methods (D-PCG).
The domain Ω is [−1, 1]2 for both the examples. The subdomain Ω− is defined as {(x, y) ∈ Ω : L(x, y) < 0}

for some level set function L(x, y), and Ω+ = Ω/Ω−. We use uniform hierarchical triangulations Tk with mesh
size hk = 2−kh0 (k = 0, 1, . . . , J). A mesh FJ is obtained from the finest uniform mesh TJ by refining inter-
face elements using the intersection points. We used computation environment of Intel(R) Core(TM) i7-3770
CPU@ 3.40GHz processor.

Example 1

The level function is L(x, y) = x2 + y2 − r20, where r0 = 0.48. The exact solution u(x, y) is

u =
{
{
{

r3
β− in Ω−,
r3
β+ + ( 1β− − 1

β+ )r30 in Ω+.

We used V3(3, 3) for the semi-uniform multigrid algorithm SUMGJ . We report the performance of SUMGJ
and D-PCG for the various cases of β jumps in Table 1. We see that the number of V3(3, 3) cycles increases
as the ratio of β increases from 1 to 1000. This is natural since the condition number of ÃJ increases as β−

β+
increases. However, for the fixed ratio of β

−
β+ , the iteration numbers of V3(3, 3) remain uniformly bounded as

level J increases. The CPU time of SUMGJ grows like O(N) while that of D-PCG grow like O(N 3
2 ).

Case 1 Case 2

V3(3, 3)-cycle D-PCG V3(3, 3)-cycle D-PCG
1
hJ

Iter. δ CPU time Iter. CPU time 1
hJ

Iter. δ CPU time Iter. CPU time

16 8 0.145 0.188 90 0.031 16 11 0.272 0.249 98 0.033
32 8 0.165 0.331 165 0.191 32 13 0.341 0.546 172 0.194
64 8 0.167 0.779 300 1.294 64 15 0.371 1.487 306 1.422

128 8 0.164 2.626 490 9.462 128 15 0.382 4.792 553 10.688
256 8 0.159 9.320 951 70.139 256 15 0.390 18.025 984 75.693

Case 3 Case 4

V3(3, 3)-cycle D-PCG V3(3, 3)-cycle D-PCG
1
hJ

Iter. δ CPU time Iter. CPU time 1
hJ

Iter. δ CPU time Iter. CPU time

16 14 0.371 0.320 109 0.040 16 17 0.443 0.395 121 0.043
32 18 0.460 0.756 190 0.205 32 23 0.510 0.963 205 0.228
64 21 0.514 2.084 345 1.487 64 27 0.595 2.551 382 1.661

128 21 0.517 6.620 630 12.191 128 33 0.655 9.894 710 13.492
256 23 0.546 27.649 1120 82.646 256 30 0.615 35.132 759 56.057

Table 1: The number of iterations, contraction number δ, and CPU time of SUMGJ and number of iterations and CPU time of
D-PCG for Example 1 with various jumps of β. Case 1, Case 2, Case 3 and Case 4 correspond to β−

β+ = 1, β−
β+ = 10, β−

β+ = 100 andβ−
β+ = 1000, respectively.
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Figure 8: Interface and subdomains of Example 2.

V3(3, 3)-cycle D-PCG
1
hJ

Iter. δ CPU time Iter. CPU time

16 10 0.231 0.213 146 0.031
32 11 0.271 0.428 389 0.245
64 12 0.310 0.994 624 1.454

128 13 0.337 3.326 940 8.881
256 14 0.367 12.809 1721 71.014

Table 2: The number of iterations, contraction number δ, and CPU time of SUMGJ and number of iterations and CPU time
of SUMGJ and D-PCG for Example 2.

Example 2

We consider an example whose subdomain Ω− is non-convex. The level set function is

L(x, y) = (3x2 + 3y2 − x)2 − (x2 + y2) + 0.03.

We refer to Figure 8. The exact solution u(x, y) is

u =
{
{
{

x((3x2+3y2−x)2−(x2+y2)+0.03)
β− in Ω−,

x((3x2+3y2−x)2−(x2+y2)+0.03)
β+ in Ω+.

We report the performance ofSUMGJ withV2(2, 2)when β− = 1, β+ = 100 in Table 2.We see that the numbers
of cycles of V2(2, 2) remain bounded as J increases. The computational complexity of SUMGJ is O(N) while
that of D-PCG is O(N 3

2 ).

6 Conclusion

In this work, we proposed a semi-uniformmultigrid algorithm (SUMG) for elliptic interface problems. We use
P1-conforming method on a semi-uniform grid for the discretization of the problems where a semi-uniform
grid is obtained by refining uniform grid at interface points.We adopt subspace correctionmethodswherewe
choose uniform grids as the auxiliary space. The transfer operator is defined so that the transferred functions
ona semi-uniformgrid satisfy theflux continuity across the interface.On the auxiliary space,weusemultigrid
algorithm where the prolongation operators are modified.
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We prove the contracting property of the proposed multigrid algorithm. We test SUMG for elliptic inter-
face problems where different β ratios are considered. We see that as the β ratio increases, the number of
V-cycles of SUMG increases.However, for fixed β ratioweobserve that thenumber ofV-cycles of SUMG remain
uniformly bounded as h → 0. We also compared SUMG with D-PCG. We observe that the computational
complexity of SUMG is O(N) for all problems while that of D-PCG is O(N3/2).

Funding: This work is supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2020R1C1C1A01005396).
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